Chapter 3

Section 3.4 - Velocity and Other Rates of Change

Recall for Rectilinear Motion (motion along a line):

Position function $=x(t)$

InSTANTANEOUS RATE OF CWANGE

Velocity function $=v(t)=x^{\prime}(t)$ of Position

$$
\begin{aligned}
& v(t)>0 \Rightarrow \text { object moving in positive direction } \\
& v(t)<0 \Rightarrow \text { object moving in negative direction } \\
& v(t)=0 \Rightarrow \text { object stopped/changing direction } \\
& |v(t)|=\text { Speed }
\end{aligned}
$$

Average Velocity: from time t_{1} to t_{2} :

$$
v_{\text {ave }}=\frac{\text { Displacement }}{\text { Time }}=\frac{\Delta x}{\Delta t}=\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Recall for Rectilinear Motion (motion along a line):

If $\mathrm{a}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$ have opp. signs \Rightarrow slowing down

Example: $x(t)=2 t^{3}-21 t^{2}+60 t+3 \quad t \geq 0$
a. When is the object moving left or right? Assume time is in seconds and position is in feet.

$$
\begin{aligned}
V(t)=6 t^{2}-42 t+60=0 & \text { RIGHT: }[0,2) \cup(5,0)) \\
6\left(t^{2}-7 t+10\right)=0 & \text { LETT: }(2,5) \\
6(t-5)(t-2)=0 &
\end{aligned}
$$

Example: $x(t)=2 t^{3}-21 t^{2}+60 t+3$
b. When is the object speeding up or slowing down?

$$
\begin{array}{cc}
a(t)=12 t-42=0 & \text { SpeEDing up } \\
6(2 t-7)=0 & (2,7 / 2) \cup(5, \infty) \\
t=7 / 2 &
\end{array}
$$

Sowing down

$$
(0,2) \cup(712,5)
$$

Example: $x(t)=2 t^{3}-21 t^{2}+60 t+3$
c. Find the displacement over the first 6 seconds.

$$
\Delta x=x(6)-x(0)=39-3=36 F T
$$

d. Find the average velocity over the first 6 seconds.

$$
v_{\text {AVE }}=\frac{\Delta x}{\Delta t}=\frac{36 \mathrm{pt}}{6 \mathrm{~s}}=6 \mathrm{FT} / \mathrm{s}
$$

Example: $x(t)=2 t^{3}-21 t^{2}+60 t+3$
e. Find the total distance traveled over the first 6 seconds.

$$
\left.\begin{array}{l}
x(0)=3 \\
x(2)=55 \\
x(5)=28 \\
x(6)=39
\end{array}\right\} \begin{aligned}
& |\Delta x|=52 \\
& |\Delta x|=27 \\
& +|\Delta x|=\frac{11}{90 \text { FT }}
\end{aligned}
$$

Ex: A ball is thrown vertically from the top of a 40 ft . building with velocity $66 \mathrm{ft} / \mathrm{s}$.

Find the height, velocity, and acceleration functions.

$$
\begin{aligned}
& h(t)=\frac{1}{2} g t^{2}+v_{0} t+h_{0}
\end{aligned}
$$

$$
\begin{aligned}
& v(t)=-32 t+66 \\
& a(t)=-32
\end{aligned}
$$

Ex: A ball is thrown vertically from the top of a 40 ft . building with velocity $66 \mathrm{ft} / \mathrm{s}$.
a. How high will the ball travel?

$$
\begin{aligned}
V(t) & =0 \quad h(2.0625)=108.0625 \mathrm{PT} \\
-32 t+66 & =0 \\
t & =\frac{64}{32}=\frac{33}{16} 2.0625
\end{aligned}
$$

b. What is the impact velocity of the ball?

$$
\begin{aligned}
& h(t)=0 \\
& -16 t^{2}+66 t+40=0 \\
& t=4.661
\end{aligned}
$$

Ex: A ball is thrown vertically from the top of a 40 ft . building with velocity $66 \mathrm{ft} / \mathrm{s}$.
c. When will the ball return to its initial position?

$$
\begin{aligned}
& h(t)=40 \\
& -16 t^{2}+66 t+40=40 \\
& -16 t^{2}+66 t=0 \\
& t(-16 t+66)=0 \\
& t=\frac{64}{16}=4.125 \mathrm{~s}
\end{aligned}
$$

Ex: A ball is thrown vertically from the top of a 40 ft . building with velocity $66 \mathrm{ft} / \mathrm{s}$.
d. What is the total distance traveled by the ball?

Homework/Classwork:

AP Packet: \#85-89, FRQ \#1-3

